Global Sources
EE Times-India
Stay in touch with EE Times India
 
 
Memory/Storage  

Biocompatible memory device works in wet conditions

Posted: 09 Aug 2011  Print Version  Bookmark and Share

Keywords:biocompatible  memory  biological research 

North Carolina State University researchers claim the creation of a soft and pliable memory device that is made using a liquid alloy of gallium and indium metals set into water-based gels, similar to gels used in biological research. The memory device which functions well in wet conditions could enable a new generation of biocompatible electronic devices.

"We have created a memory device with the physical properties of Jell-O," said Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the research.

Conventional electronics are typically made of rigid, brittle materials and don't function well in a wet environment. "Our memory device is soft and pliable, and functions extremely well in wet environments, similar to the human brain," Dickey said. Prototypes of the device have not yet been optimised to hold significant amounts of memory, but work well in environments that would be hostile to traditional electronics.

 Soft and pliable memory device

The new technology holds promise for interfacing electronics with biological systems—such as cells, enzymes or tissue.

The device's ability to function in wet environments, and the biocompatibility of the gels, mean that this technology holds promise for interfacing electronics with biological systems—such as cells, enzymes or tissue. "These properties may be used for biological sensors or for medical monitoring," Dickey stated. The device functions much like so-called "memristors," which are vaunted as a possible next-generation memory technology. The individual components of the "mushy" memory device have two states: one that conducts electricity and one that does not. These two states can be used to represent the 1s and 0s used in binary language. Most conventional electronics use electrons to create these 1s and 0s in computer chips. The mushy memory device uses charged molecules called ions to do the same thing.

In each of the memory device's circuits, the metal alloy is the circuit's electrode and sits on either side of a conductive piece of gel. When the alloy electrode is exposed to a positive charge it creates an oxidized skin that makes it resistive to electricity. We'll call that the 0. When the electrode is exposed to a negative charge, the oxidized skin disappears, and it becomes conducive to electricity. We will call that the 1.

Normally, whenever a negative charge is applied to one side of the electrode, the positive charge would move to the other side and create another oxidized skin—meaning the electrode would always be resistive. To solve that problem, the researchers' "doped" one side of the gel slab with a polymer that prevents the formation of a stable oxidized skin. That way one electrode is always conducive—giving the device the 1s and 0s it needs for electronic memory.

- Julien Happich
  EE Times





Comment on "Biocompatible memory device works in..."
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 

Go to top             Connect on Facebook      Follow us on Twitter      Follow us on Orkut

 
Back to Top