Synopsys Inc. has announced that it has improved the convolutional neural network (CNN) engine in its DesignWare EV6x Vision Processors. The upgrade aims to address requirements for a broad range of high-performance embedded vision applications such as advanced driver assistance systems (ADAS), video surveillance, augmented and virtual reality, and simultaneous localisation and mapping (SLAM).

According to Synopsys, the upgraded CNN engine delivers up to 4.5 TeraMACs per second when implemented in 16-nm FinFET process technologies under typical conditions, four times more performance than its previous CNN engine. It also supports both coefficient and feature map compression/decompression to reduce data bandwidth requirements and decrease power consumption, Synopsys added. The vision CPU scales from one to four vector DSPs and operates in parallel to the CNN engine.

The DesignWare EV6x Processor family integrates scalar, vector DSP and CNN processing units for accurate and fast vision processing. The EV6x supports any convolutional neural network, including networks such as AlexNet, VGG16, GoogLeNet, Yolo, Faster R-CNN, SqueezeNet and ResNet. Designers can run CNN graphs originally trained for 32-bit floating point hardware on the EV6x's 12-bit CNN engine, reducing the power and area of their designs while maintaining the same levels of detection accuracy. The engine delivers power efficiency of up to 2,000GMACs/sec/W when implemented in 16-nm FinFET process technologies (worst-case conditions). The EV6x's CNN hardware also supports neural networks trained for 8-bit precision to take advantage of the lower memory bandwidth and power requirements of these graph types.

To simplify software application development, the EV6x processors are supported by a suite of tools and software. The latest release of the DesignWare ARC MetaWare EV Development Toolkit includes a CNN mapping tool that analyses neural networks trained using popular frameworks like Caffe and Tensorflow, and automatically generates the executable for the programmable CNN engine. For maximum flexibility and future-proofing, the tool can also distribute computations between the vision CPU and CNN resources to support new and emerging neural network algorithms as well as customer-specific CNN layers. Combined with software development tools based on OpenVX, OpenCV and OpenCL C embedded vision standards, the MetaWare EV Development Toolkit offers a full suite of tools needed to accelerate embedded software development.

The DesignWare EV61, EV62 and EV64 processors are scheduled to be available in August 2017. The MetaWare EV Development Toolkit is available now. Support for the TensorFlow framework in the Toolkit's CNN mapping tool will be available in October 2017.